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Vertex cover (optimization version)

Input: A graph.
Output: A subset of vertices of minimum

size that touches every edge.
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ApproxVertexCover(G (V ,E ))

C ← empty set
while E is not empty:
{u, v} ← any edge from E
add u, v to C
remove from E all edges incident to u, v

return C
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Lemma
The algorithm ApproxVertexCover is
2-approximate: it returns a vertex cover that
is at most twice as large as an optimal one
and runs in polynomial time.



Proof

The set M of all edges selected by the
algorithm forms a matching

Any vertex cover of the graph has size
at least |M |
The algorithm returns a vertex cover C
of size 2|M |, hence

|C | = 2 · |M | ≤ 2 · OPT
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Summary
We don’t know the value of OPT, but
we’ve managed to prove that

|C | ≤ 2 · OPT

This is because we know a lower bound
on OPT: it is at least the size of any
matching

|C | = 2 · |M | ≤ 2 · OPT
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Final Remarks

The bound is tight: there are graphs for
which the algorithm returns a vertex
cover of size twice the minimum size.

No 1.99-approximation algorithm is
known.
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Metric TSP (optimization version)

Input: An undirected graph G (V ,E ) with
non-negative edge weights
satisfying the triangle inequality:
for all u, v ,w ∈ V ,
d(u, v) + d(v ,w) ≥ d(u,w).

Output: A cycle of minimum total length
visiting each vertex exactly once .



Lower Bound
We are going to design a
2-approximation algorithm: it returns a
cycle that is at most twice as long
as an optimal cycle: C ≤ 2 · OPT

Since we don’t know the value of OPT,
we need a good lower bound L on OPT:

C ≤ 2 · L ≤ 2 · OPT
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Minimum Spanning Trees

Lemma
Let G be an undirected graph with
non-negative edge weights. Then
MST(G ) ≤ TSP(G ).

Proof
By removing any edge from an optimum
TSP cycle one gets a spanning tree of G .
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ApproxMetricTSP(G )
T ← minimum spanning tree of G

D ← T with each edge doubled
find an Eulerian cycle C in D
return a cycle that visits vertices in
the order of their first appearance in C



ApproxMetricTSP(G )
T ← minimum spanning tree of G
D ← T with each edge doubled

find an Eulerian cycle C in D
return a cycle that visits vertices in
the order of their first appearance in C



ApproxMetricTSP(G )
T ← minimum spanning tree of G
D ← T with each edge doubled
find an Eulerian cycle C in D

return a cycle that visits vertices in
the order of their first appearance in C



ApproxMetricTSP(G )
T ← minimum spanning tree of G
D ← T with each edge doubled
find an Eulerian cycle C in D
return a cycle that visits vertices in
the order of their first appearance in C



Example: points on a plane



Example: points on a plane



Example: points on a plane



Example: points on a plane

1 16

4 5

9

10

7

12

811

2

15

3

14

6
13



Example: points on a plane

1 16

4 5

9

10

7

12

811

2

15

3

14

6
13



Example: points on a plane



Lemma
The algorithm ApproxMetricTSP is
2-approximate.

Proof

The total length of the MST T is at
most OPT.
Bypasses can only decrease the total
length.
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Final Remarks

The currently best known approximation
algorithm for metric TSP is Christofides’
algorithm that achieves a factor of 1.5

If P ̸= NP, then there is no
𝛼-approximation algorithm for the
general version of TSP for any
polynomial time computable function 𝛼
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LocalSearch
s ← some initial solution
while there is a solution s ′ in the
neighborhood of s which is better than s:

s ← s ′

return s

Computes a local optimum instead of a global
optimum

The larger is the neighborhood, the better is
the resulting solution and the higher is the
running time
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Local Search for TSP

Let s and s ′ be two cycles visiting each
vertex of the graph exactly once

The distance between s and s ′ is at
most d , if one can get s ′ by deleting d

edges from s and adding other d edges
Neighborhood N(s, r) with center s and
radius r : all cycles with distance at most
r from s
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Changing two edges in a suboptimal solution:
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Example

A suboptimal solution that cannot be
improved by changing two edges:

Need to allow changing three edges to
improve this solution
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Performance

Trade-off between quality and running
time of a single iteration

Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor
But works well in practice
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Coping with NP-completeness

special cases
intelligent exhaustive search
approximation algorithms
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